
yinyang
Release v0.2

Dominik Winterer, Chengyu Zhang, Zhendong Su

Feb 20, 2023

CONTENTS

1 Installation 3

2 Fuzzing setup 5
2.1 SMT-LIB seeds . 5
2.2 SMT solvers . 5

3 Basic usage 7

4 Customization 9
4.1 Options . 9
4.2 Customize solvers configurations . 9
4.3 Customize bug detection . 10

5 Fusion 13
5.1 Basic Idea . 13
5.2 Usage . 13
5.3 Seeds . 14
5.4 Fusion functions . 14

6 Building on yinyang 15
6.1 Understanding TypeFuzz’s implementation . 15
6.2 Customizing and extending yinyang . 16
6.3 Run TypeFuzz with other SMT Solvers . 16
6.4 Devise a custom mutator . 17
6.5 Extend the input language . 17
6.6 Citing yinyang . 17
6.7 Contact . 18

i

ii

yinyang, Release v0.2

yinyang is a fuzzing framework for SMT solvers. It realizes three tools typefuzz, opfuzz and yinyang. Given a set
of SMT-LIB seed formulas, each of the tools generates mutant formulas to stress-test SMT solvers. yinyang roughly
operates in the following stages:

1. Parsing: First, yinyang parses a single or a set of SMT-LIB formulas to be used for fuzzing. yinyang’s parser
supports the SMT-LIB v2.6 standard and is customizable.

2. Mutation: Next, yinyang will mutate the parsed formula(s) using a mutation strategy. yinyang ships three mu-
tation stragies. The most powerful one is generative type-aware operator mutation which mutates expressions
within seed formulas and will by default generate 300 mutant formulas per parsed formula.

3. Oracle Check: Finally, yinyang will query the SMT solvers under test with the mutant formulas and compare the
result against a test oracle. By default, such a test oracle would be a second SMT solver but it can also be fixed
to be sat or unsat.

yinyang is intended for use by (1) SMT solver developers testing existing solvers, (2) researchers inventing new decision
procedures to asses the robustness of their implementations, and (3) practitioners developing applications based on SMT
solvers.

CONTENTS 1

https://en.wikipedia.org/wiki/Fuzzing
http://smtlib.cs.uiowa.edu/language.shtml

yinyang, Release v0.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

To install a stable version of yinyang use:

` pip3 install yinyang `

The following commands clone yinyang and install the antlr4 python runtime.

$ git clone https://github.com/testsmt/yinyang.git
$ pip3 install antlr4-python3-runtime==4.9.2

3

yinyang, Release v0.2

4 Chapter 1. Installation

CHAPTER

TWO

FUZZING SETUP

2.1 SMT-LIB seeds

To select SMT-LIB seed files for fuzzing SMT solvers with yinyang, edit scripts/SMT-LIB-clone.sh to select the
logics for testing. Then use the following command to download the chosen benchmarks.

$./scripts/SMT-LIB-clone.sh

Alternatively, you can download the benchmarks directly from the website of SMT-LIB initiative or use your own
benchmarks.

2.2 SMT solvers

To run typefuzz or opfuzz, you need to install two or more SMT solvers. The SMT-LIB initiative provides a compre-
hensive list of SMT solvers. Make sure that all SMT solvers you consider for testing support the chosen seeds.

If you can only use one SMT solver consider Fusion.

5

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/solvers.shtml

yinyang, Release v0.2

6 Chapter 2. Fuzzing setup

CHAPTER

THREE

BASIC USAGE

yinyang is a mutation-based fuzzer, i.e. it mutates a set of seed formulas using a mutation strategy and then uses the
mutated formulas as the test seeds for SMT solvers. yinyang can so detect soundness bugs, invalid model bugs, crashes,
segfaults, etc. With typefuzz we generate mutants by generating fresh expressions from the ones from the seed and
root them by operators such as =,distinct,+,-, *,/ by one another. You can run yinyang with the typefuzz
strategy using the following command:

$ typefuzz "<solver_clis>" <seed_path>

• <solver_clis>: a sequence of SMT solvers command lines separated by semicolons. At least two SMT solvers
command lines are necessary.

• <seed_path>: path to single seed or a directory containing the SMT-LIB seed files.

Example:

$ typefuzz "z3 model_validate=true;cvc4 --check-models -m -i -q" benchmarks

yinyang will by default randomly select formulas from the folder ./benchmarks. By default SMT-LIB files larger
than 20k will be ignored. yinyang will generate 300 mutants per seed formula and will run in an infinite loop. You can
use the shortcut CTRL+C to terminate yinyang manually. If a bug has been found, the bug trigger is stored in ./bugs.

Note: To catch invalid model bugs, you have to supply options to enable model validation in <solver_clis>. Also
consider that you may need to supply options to enable model production and incremental mode to command lines in
<solver_clis>.

Reducing a bug. After finding a bug, it is useful to produce a minimal test case before reporting the bug to save the
SMT solver developers’ time and effort. For many test cases, the C code reducer creduce does a great job. Besides,
SMT-LIB specific reducer pydelta can be used.

7

https://embed.cs.utah.edu/creduce/
https://github.com/nafur/pydelta

yinyang, Release v0.2

8 Chapter 3. Basic usage

CHAPTER

FOUR

CUSTOMIZATION

4.1 Options

yinyang provides the following options. Please consult typefuzz --help for a full list.

• -i --iterations ITERATIONS the number of iterations on each seed. (default: 300)

• -m --modulo MODULO specifies how often the mutants will be forwarded to the SMT solvers. For example, with
300 iterations and 2 as a modulo, 150 mutants per seed file will be passed to the SMT solvers. High modulo and
iteration counts prioritize deeper mutations. (default: 2)

• -t --timeout TIMEOUT imposes a timeout limit (in seconds) on each SMT solver for solving mutant formula.
(default: 8)

• -d, --diagnose forwards solver outputs to stdout e.g. for solver command line diagnosis.

• -bugs BUGSFOLDER (default: ./bugs)

• -scratch SCRATCHFOLDER specifies where the mutant formulas are temporarily stored. Note, if you run
yinyang with several processes in parallel, each instance should have its own scratch folder. (default: ./scratch)

• -km --keep-mutants do not delete the mutants from the scratch folder. Warning: beware that this can quickly
exhaust your entire disk space.

• -g, --generate-functions dimension of the fusion functions to generate, if greater than 0 do not take into
account –config option. (default: 0)

• -m, --multiple-variables try to fuse at least vars variables, if possible, distributing the variables evenly as
possible between the seeds (default: 2)

• -q --quiet do not output statistics and other output.

• -fl, --file-size-limit file size limit on seed formula in bytes. (default: 20000)

4.2 Customize solvers configurations

If you want to test several SMT solver configurations at once the putting them as a commandline argument like
typefuzz "<solver_clis>" <seed_path> may be inconvenient to you. Instead, you can modify the solver list
in .yinyang/Config.py. The directory file need to be created by the user.

As an example consider:

solvers = [
"z3 model_validate=true",
"z3 model_validate=true smt.arith.solver=2",

(continues on next page)

9

yinyang, Release v0.2

(continued from previous page)

"z3 model_validate=true smt.arith.solver=3",
"z3 model_validate=true smt.arith.solver=6",
"cvc4 --check-models --produce-models --incremental --strings-exp -q",

]

You can then use typefuzz "" <seed_path> to run the above five solver configurations.

4.3 Customize bug detection

yinyang’s bug detection logic is based on three lists: crash_list, duplicate_list, ignore_list of .yinyang/
Config.py which you can customize. yinyang detects crash bugs by matching the stdout and stderr of the solvers in
with the strings in the list``crash_list``. If yinyang detects a bug this way, it subsequently matches the crash message
against all strings in duplicate_list. The duplicate_list is useful to filter out repeatedly occurring bugs from
getting copied to ./bugs. The ignore_list can be used to filter out errors occurring in a solver call. By default
yinyang detects mutants returning non-zero exit codes as crashes except those that match with the ignore_list.

The below setup shows the three lists in .yinyang/Config.py that worked well in practice with Z3 and CVC4.

crash_list = [
"Exception",
"lang.AssertionError",
"lang.Error",
"runtime error",
"LEAKED",
"Leaked",
"Segmentation fault",
"segmentation fault",
"segfault",
"ASSERTION",
"Assertion",
"Fatal failure",
"Internal error detected",
"an invalid model was generated",
"Failed to verify",
"failed to verify",
"ERROR: AddressSanitizer:",
"invalid expression",
"Aborted"

]

duplicate_list = [

]

ignore_list = [
"(error ",
"unexpected char",
"failed to open file",
"Expected result sat but got unsat",
"Expected result unsat but got sat",
"Parse Error",

(continues on next page)

10 Chapter 4. Customization

yinyang, Release v0.2

(continued from previous page)

"Cannot get model",
"Symbol 'str.to-re' not declared as a variable",
"Symbol 'str.to.re' not declared as a variable",
"Unimplemented code encountered",

]

4.3. Customize bug detection 11

yinyang, Release v0.2

12 Chapter 4. Customization

CHAPTER

FIVE

FUSION

Fusion is a metamorphic testing approach than can work with a single SMT solver.If multiple suitable SMT solvers are
available for your use-case, we recommend using opfuzz instead.

5.1 Basic Idea

The basic idea behind fusion is to fuse formula pairs into a new formula of known satisfiability (either both sat or both
unsat). Given two seed formulas 𝜙1, 𝜙2 and variables 𝑥, 𝑦 of 𝜙1 and 𝜙2 respectively, the idea is to

1. Concatenate the formulas 𝜙1 and 𝜙2

2. Add a fresh variable 𝑧 = 𝑓(𝑥, 𝑦)

3. Replace random occurrences of 𝑥 = 𝑔𝑥(𝑦) and 𝑦 = 𝑔𝑦(𝑥) within the concatenated formula

We call 𝑓 a fusion function and 𝑔𝑥, 𝑔𝑦 inversion functions.

5.2 Usage

$ python3 yinyang.py "<solver_clis>" -o <oracle> -s fusion <seed_path1> <seed_path2>
$ python3 yinyang.py "<solver_clis>" -o <oracle> -s fusion <seed_path>

where

• <solver_clis> a sequence of SMT solver commandlines separated by semicolons ;. Note, since Fusion is a
metamorphic testing approach, one SMT solver is sufficient.

• <oracle> desired test oracle result {sat, unsat}.

• <seed_path1>, <seed_path2> SMT-LIB v2.6 file of the same satisfiability, i.e. both either sat or unsat in
accordance with the oracle.

• <seed_path> path to single seed or directory containing the SMT-LIB seed files, all of the same satisifiability.

Examples:

$ python3 yinyang.py "z3" -o sat -s fusion examples/phi1.smt2 examples/phi2.smt2

yinyang will test z3 by running fusion with 30 iterations on the two satisfiable seed formulas. The mutants generated
yinyang will then be by construction satisfiable. In turn, with unsat as an oracle and two unsatisfiable seed formulas,
fusion will generate unsatisfiable formulas.

13

yinyang, Release v0.2

$ python3 yinyang.py "z3" -o unsat -s fusion examples/phi3.smt2 examples/phi4.smt2

5.3 Seeds

Fusion requires the seeds that are pre-categorized to be either sat or unsat. Pre-categorized SMT-LIB scripts are
available in the following repository. Fusion currently only supports non-incremental mode, e.g. LIA, LRA, NRA,
QF_LIA, QF_LRA, QF_NRA, QF_SLIA, QF_S, etc. Fusion’s applicability is constraint by the fusion function used.

5.4 Fusion functions

The configuration file yinyang/config/fusion_functions.txt specifies fusion and inversion functions. The for-
mat is the following:

#begin
[<declaration of x_i>]*
<declaration of z>
[<declaration of c_i>*]
<assert fusion function>
<assert inversion function>
<assert inversion function>
#end

Example:

The following code shows schematically fusion and inversion are described in yinyang/config/
fusion_functions.txt.

#begin
(declare-const x Real)
(declare-const y Real)
(declare-const z Real)
(declare-const c Real)
(declare-const c1 Real)
(assert (= z (* (- (- y c) x) c1)))
(assert (= x (- (- y c) (/ z c1))))
(assert (= y (+ (+ (/ z c1) x) c)))
#end

The example realizes a fusion function for integer variables. First, the variables x,y,z are declared. Variables c_i will
be substituted by a random but fixed real constant each. Then fusion function 𝑧 = 𝑓(𝑥, 𝑦) = ((𝑦 − 𝑐) − 𝑥) * 𝑐1 is
defined in the first assert block. Its corresponding inversion functions for x and y are described in the second and third
asserts.

14 Chapter 5. Fusion

https://github.com/testsmt/semantic-fusion-seeds

CHAPTER

SIX

BUILDING ON YINYANG

This section gives a brief overview of TypeFuzz’s implementation and describes how researchers and practitioners can
customize and extend TypeFuzz and yinyang.

6.1 Understanding TypeFuzz’s implementation

The following file tree shows the most important files of typefuzz and includes a brief description.

yinyang
bin

typefuzz - main executable of typefuzz, cli interface
config

Config.py - solver configurations, crash, duplicate,␣
→˓ignore lists

typefuzz_config.txt - typefuzz configuration file
src

base - contains driver, argument parser, exitcodes,␣
→˓etc.

core
Fuzzer.py - implements the fuzzing loop and the bug␣

→˓checking oracle
mutators

| | GenTypeAwareMutation
GenTypeAwareMutation.py - mutator integrating generative type-aware␣

→˓mutations
parsing

Ast.py - classes for scripts, commands, expressions,␣
→˓etc.

Parse.py - SMT-LIB v2.6 parser
SMTLIBv2.g4 - SMT-LIB v2.6 antlr4 grammar
Typechecker.py - SMT-LIB v2.6 type checker

tests - contains unit, integration, and regression␣
→˓tests

When TypeFuzz is called from the command line, it executes bin/typefuzz containing the main function. After pars-
ing the command line and reading in the seeds, the method Fuzzer.py:run is called. It randomly pops an SMT-LIB
file from the seed list (Fuzzer.py:142), then parses (Fuzzer.py:98) and type-checks (Fuzzer.py:146) the SMT-LIB file.
Next, we compute the set of unique expressions (Fuzzer.py:148) from the seed and pass it to a newly created mutator
GenTypeAwareMutation (Fuzzer.py:149). The mutator is then called in a for-loop realizing n consecutive mutations
(Fuzzer.py:171). Each mutated formula is then passed to the SMT solvers under test which checks for soundness bugs,

15

yinyang, Release v0.2

invalid model bugs, assertion violations, segfaults (Fuzzer.py:185) and dumps the bug triggers to the disk. For details
on these checks, read the comments in the method Fuzzer.py:test.

Generative type-aware mutation’s mutator class is realized in GenTypeAwareMutation.py. It takes a type-checked SMT-
LIB script and the set of its unique expressions as arguments to the constructor. Then, we parse the configuration file
(yinyang/config/typefuzz_config.txt) containing the operator signatures. The method mutate implements a mutation
step. First, we call the method get_all_subterms to return a list of all expressions (av_expr) and another list with their
types (expr_type). Next, we repeatedly choose a term t1 from the formula to be substituted by a term t2 (returned by
get_replacee). If we could successfully construct such a term, then we substitute and return the mutated formula.

The get_replacee(term) method randomly chooses an operator from the list of candidate operators. The list of candidate
operators contains all operators with a return type matching term’s type and includes the identity operator id. Next, we
pick a type-conforming expression from the set of unique expressions for every argument for the operator at hand and
return the expression. The get_replacee`method may fail, e.g., if we would have picked an operator of a conforming
type but no term with conforming types to its arguments exist. To avoid this, we repeat the `get_replacee method several
times.

6.2 Customizing and extending yinyang

The yinyang framework has many tests to ensure the reliability of its mutators and the bug detection logic. All tests are
integrated into a CI making sure that the bug-finding ability is preserved on every commit. yinyang adheres to the PEP 8
code quality standard. We briefly describe how researchers and practitioners can customize and extend the framework.
For an in-depth overview of the yinyang framework, see the [documentation](https://yinyang.readthedocs.io/en/latest/).

6.3 Run TypeFuzz with other SMT Solvers

Besides Z3 and CVC4, TypeFuzz can be run with any other SMT solver such as [MathSAT](http://mathsat.fbk.
eu), [Boolector](http://verify.inf.usi.ch/content/opensmt2), [Yices](http://yices.csl.sri.com/), and [SMT-Interpol](http:
//ultimate.informatik.uni-freiburg.de/smtinterpol/), etc. Since TypeFuzz is based on differential testing, it needs at
least two solver configurations, ideally with a large overlap in the supported SMT logics. Furthermore, yinyang’s type
checker currently has stable support for string and arithmetic logics. Support for other logics is currently experimental
but will be finalized shortly.

Solver configurations could either be specified in the command line or in the configuration file yinyang/config/Config.py
such as: .. code-block:: text

solvers = [
“yices-smt2 –incremental” “z3 model_validate=true”, “z3 model_validate=true smt.arith.solver=6”,
“cvc4 –check-models –produce-models –incremental –strings-exp -q”,

]

To run TypeFuzz with these four solver configurations in the config file, you would need to run typefuzz “” <benchmark-
dir>. Note, the crash_list in yinyang/config/config.py, which may need to be updated ensuring that crashes by the new
solver(s) are caught.

16 Chapter 6. Building on yinyang

https://yinyang.readthedocs.io/en/latest/
http://mathsat.fbk.eu
http://mathsat.fbk.eu
http://verify.inf.usi.ch/content/opensmt2
http://yices.csl.sri.com/
http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://ultimate.informatik.uni-freiburg.de/smtinterpol/

yinyang, Release v0.2

6.4 Devise a custom mutator

Fuzzing frameworks such as AFL and others have greatly benefited from the SE/PL community efforts to extend their
mutation strategies. In the same spirit, we describe steps on how users can extend yinyang with custom mutators.

1. Add a new mutator class to src/mutators, e.g., CustomGenerator.py. A mutator takes a parsed
SMT-LIB script as its input and returns the mutated script. The mutation should usually be
implemented in a separate mutate method CustomGenerator.py::mutate(). For example, consider,
src/mutators/GenTypeAwareMutation/GenTypeAwareMutation.py or src/mutators/TypeAwareOpMutation.py.

2. Provide an executable in the bin directory and add parser code to base/ArgumentParser.py.

3. Integrate the mutator in the fuzzing loop in src/core/Fuzzer.py::run().

6.5 Extend the input language

Similar to many PLs, the [SMT-LIB language](https://smtlib.cs.uiowa.edu/language.shtml) is steadily augmented by
new features, theories, etc. Furthermore, researchers use SMT-LIB dialects for their solver inputs (e.g. for sygus rewrite
rules). To support such use cases, we have based yinyang’s parser on an [ANTLR](https://www.antlr.org/) grammar
that is simple to customize.

1. Extend grammar src/parsing/SMTLIBv2.g4.

2. Regenerate the grammar using src/parsing/regenerate_grammar.sh.

3. Extend parse tree visitor src/parsing/AstVisitor.py and AST implementation src/parsing/Ast.py.

4. If type checking is needed, augment the type checker in src/parsing/Typechecker.py.

6.6 Citing yinyang

The testing approaches implemented in yinyang are based on following two papers.

Type-Aware Operator Mutation (opfuzz) [pdf]

@article{winterer-zhang-su-oopsla2020
author = {Dominik Winterer and

Chengyu Zhang and
Zhendong Su},

title = {On the unusual effectiveness of type-aware operator mutations for
testing {SMT} solvers},

journal = {Proc. {ACM} Program. Lang.},
volume = {4},
number = {{OOPSLA}},
pages = {193:1--193:25},
year = {2020},

}

Semantic Fusion (fusion) [pdf]

@inproceedings{winterer-zhang-su-pldi2020,
title = {Validating SMT Solvers via Semantic Fusion},
author = {Winterer, Dominik and Zhang, Chengyu and Su, Zhendong},
year = {2020},

(continues on next page)

6.4. Devise a custom mutator 17

https://smtlib.cs.uiowa.edu/language.shtml
https://www.antlr.org/
https://dl.acm.org/doi/abs/10.1145/3428261
https://dl.acm.org/doi/abs/10.1145/3385412.3385985

yinyang, Release v0.2

(continued from previous page)

booktitle = {Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation},

pages = {718–730}
}

6.7 Contact

We are always happy to receive your feedback or help you adjust yinyang to the needs of your custom solver, help you
build on yinyang, etc. Reach out for us.

• Dominik Winterer - dominik.winterer@inf.ethz.ch

• Chengyu Zhang - dale.chengyu.zhang@gmail.com

• Jiwon Park - jiwon.park@polytechnique.edu

• Zhendong Su - zhendong.su@inf.ethz.ch

18 Chapter 6. Building on yinyang

https://wintered.github.io/
mailto:dominik.winterer@inf.ethz.ch
http://chengyuzhang.com/
mailto:dale.chengyu.zhang@gmail.com
https://www.linkedin.com/in/jiwon-park-473998170/?originalSubdomain=fr
mailto:jiwon.park@polytechnique.edu
https://people.inf.ethz.ch/suz/
mailto:zhendong.su@inf.ethz.ch

	Installation
	Fuzzing setup
	SMT-LIB seeds
	SMT solvers

	Basic usage
	Customization
	Options
	Customize solvers configurations
	Customize bug detection

	Fusion
	Basic Idea
	Usage
	Seeds
	Fusion functions

	Building on yinyang
	Understanding TypeFuzz’s implementation
	Customizing and extending yinyang
	Run TypeFuzz with other SMT Solvers
	Devise a custom mutator
	Extend the input language
	Citing yinyang
	Contact

